695 research outputs found

    Ripples in Tapped or Blown Powder

    Full text link
    We observe ripples forming on the surface of a granular powder in a container submitted from below to a series of brief and distinct shocks. After a few taps, the pattern turns out to be stable against any further shock of the same amplitude. We find experimentally that the characteristic wavelength of the pattern is proportional to the amplitude of the shocks. Starting from consideration involving Darcy's law for air flow through the porous granulate and avalanche properties, we build up a semi-quantitative model which fits satisfactorily the set of experimental observations as well as a couple of additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9

    Secondary Instabilities of Surface Waves on Viscous Fluids in the Faraday Instability

    Full text link
    Secondary instabilities of Faraday waves show three regimes: (1) As seen previously, low-viscosity (nu) fluids destabilize first into squares. At higher driving accelerations a, squares show low-frequency modulations corresponding to the motion of phase defects, while theory predicts a stationary transverse amplitude modulation (TAM). (2) High-nu fluids destabilize first to stripes. Stripes then show an oscillatory TAM whose frequency is incommensurate with the driving frequency. At higher a, the TAM undergoes a phase instability. At still higher a, edge dislocations form and fluid droplets are ejected. (3) Intermediate-nu fluids show a complex coexistence of squares and stripes, as well as stationary and oscillatory TAM instabilities of the stripes.Comment: REVTEX, with 3 separate uuencoded figures, to appear in Europhys. Let

    Capillary wave turbulence on a spherical fluid surface in low gravity

    Get PDF
    We report the observation of capillary wave turbulence on the surface of a fluid layer in a low-gravity environment. In such conditions, the fluid covers all the internal surface of the spherical container which is submitted to random forcing. The surface wave amplitude displays power-law spectrum over two decades in frequency, corresponding to wavelength from mmmm to a few cmcm. This spectrum is found in roughly good agreement with wave turbulence theory. Such a large scale observation without gravity waves has never been reached during ground experiments. When the forcing is periodic, two-dimensional spherical patterns are observed on the fluid surface such as subharmonic stripes or hexagons with wavelength satisfying the capillary wave dispersion relation

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Introduction to Magnetic Monopoles

    Full text link
    One of the most basic properties of magnetism is that a magnet always has two poles, north and south, which cannot be separated into isolated poles, i.e., magnetic monopoles. However, there are strong theoretical arguments why magnetic monopoles should exist. In spite of extensive searches they have not been found, but they have nevertheless played a central role in our understanding of physics at the most fundamental level.Comment: 22 pages, 7 figures. To be published in Contemporary Physic

    Persistent holes in a fluid

    Get PDF
    We observe stable holes in a vertically oscillated 0.5 cm deep aqueous suspension of cornstarch for accelerations a above 10g. Holes appear only if a finite perturbation is applied to the layer. Holes are circular and approximately 0.5 cm wide, and can persist for more than 10^5 cycles. Above a = 17g the rim of the hole becomes unstable producing finger-like protrusions or hole division. At higher acceleration, the hole delocalizes, growing to cover the entire surface with erratic undulations. We find similar behavior in an aqueous suspension of glass microspheres.Comment: 4 pages, 6 figure

    Faraday Instability in a Surface-Frozen Liquid

    Full text link
    Faraday surface instability measurements of the critical acceleration, a_c, and wavenumber, k_c, for standing surface waves on a tetracosanol (C_24H_50) melt exhibit abrupt changes at T_s=54degC above the bulk freezing temperature. The measured variations of a_c and k_c vs. temperature and driving frequency are accounted for quantitatively by a hydrodynamic model, revealing a change from a free-slip surface flow, generic for a free liquid surface (T>T_s), to a surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall (T < T_s). The change at T_s is traced to the onset of surface freezing, where the steep velocity gradient in the surface-pinned flow significantly increases the viscous dissipation near the surface.Comment: 4 pages, 3 figures. Physical Review Letters (in press

    Kink-induced transport and segregation in oscillated granular layers

    Get PDF
    We use experiments and molecular dynamics simulations of vertically oscillated granular layers to study horizontal particle segregation induced by a kink (a boundary between domains oscillating out of phase). Counter-rotating convection rolls carry the larger particles in a bidisperse layer along the granular surface to a kink, where they become trapped. The convection originates from avalanches that occur inside the layer, along the interface between solidified and fluidized grains. The position of a kink can be controlled by modulation of the container frequency, making possible systematic harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let

    Periodically kicked turbulence

    Get PDF
    Periodically kicked turbulence is theoretically analyzed within a mean field theory. For large enough kicking strength A and kicking frequency f the Reynolds number grows exponentially and then runs into some saturation. The saturation level can be calculated analytically; different regimes can be observed. For large enough Re we find the saturation level to be proportional to A*f, but intermittency can modify this scaling law. We suggest an experimental realization of periodically kicked turbulence to study the different regimes we theoretically predict and thus to better understand the effect of forcing on fully developed turbulence.Comment: 4 pages, 3 figures. Phys. Rev. E., in pres

    An analytical stability theory for Faraday waves and the observation of the harmonic surface response

    Full text link
    We present an analytical stability theory for the onset of the Faraday instability, applying over a wide frequency range between shallow water gravity and deep water capillary waves. For sufficiently thin fluid layers the surface is predicted to occur in harmonic rather than subharmonic resonance with the forcing. An experimental confirmation of this result is given. PACS: 47.20.Ma, 47.20.Gv, 47.15.CbComment: 10 pages (LaTeX-file), 3 figures (Postscript) Submitted for publicatio
    • …
    corecore